CONY T B I T T T
LA-UR -84-2335
LA-UR--84-2335

DE84 015515

Los Alamos Nanonal Laboratory i1s operated by the University of Calforria for the United States Depaniment of Enargy under contract W-74G5-ENG-36

TITLE CONFIGURATION MANAGEMENT FOR MISSION-CRITICAL SOFTWARE:
THE LOS ALAMOS SOLUTION

AUTHOR(S) G. Cort and D. M. Barrus °*

SUBMITTED TO Softool Users Group Meeting, Santa Barbara, CA,
September 10, 1984.

DISCLAIMER

This report was prepared as an account of work sponsored by an agoncy of the United States
Government. Neither the Uniteu States Giovernment nor sany agency thereof, nor any of their
omployees, makes any warranty, oxpress or implied, or awnmes any legal lability or responsi-
bility for the uccuracy, completoness, or usefulness of any information, apparatus, product, or
praceas disclosed, or represents that its use would not infringe privately owned rights. Refer-
onoo herein to any specific commercial product, proceas, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply lts endorsement, reconi-
mendation, or favoring by the United States Covernment ur any agency thereof. The views
and opinions of suthors expressed herein do not necemsarily state or reflect those of the
United States Guovernment or any agency thereof.

By acceptance ol this article the publisher recognizes thal the U S Gove "ment relains a nonexciugive toyalty-free icense (0 publish or reproduce
the published form ol this contibubion or (o sliow others to dv 30 for US fiovernment puiposes

The Los Alamos National Lahoratory requests that the publisher idently this articie as work performed unde the auspices of the U S Depariment of Energy

O A AR LN IS T ’7\1‘,
(@ LosAlamos National Laborator
L@S A @m@)@ LosAIamos.Nev'v M%xicoomsag

FOAM NO 838 R4
81 NO NS/

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Configuration Management for Mission-Critical Software:
the Los Alamos Solution*

G. Cort and D. M. Barrus
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Introdﬁction

A3 has been the case rfor most of the disciplines of software englineer-
ing, the evolution of the principles of software configuratlon
management has been driven mainly by the requirements of large-scale
software development projects. Although thils situation has resulted
in very effective anc efficlent strategles for managing these glant
projects, the very different needs of small or intermedlate sized
projects have been largely l1gnored. Thils has served effectively to
deny both the lmmediate and the long term benefits of software en-
gineering in general, and software configuration management in
particular, to the majority of software development projJects. Far
more serious 1s the dangerous attitude fostered by the large scale
approach to these very important disciplines, namely that the tech-
niques of software engineering and configuretior management cen only
oe cost-effective when applied on a grand scale.

In this paper we present our experiences as a small group responsible
for the development of a moderately large real-time data acquisition
system. During the early stages of our project we recognized the need
for a rigorous software configuration management system to support our
development and malntenance activitlies. Thils paper describes our
approach to the utilizatlion of the Softool Change and Configuration
Control (CCC) anvironment. The steps that we have taken to develop a
very poverf{ul development/configuratlion management environment
(incorporating CCC) are outlined and Justified. The extension of the
Los Alamos system to management of large-scale projJects 1ls discussed.

Project Organization

In order to establish the requirements and operational constraints
which led to the development of the Los Alamos system, a brief
description of our facllity and the organization of our project 1s
appropriate. The Los Alamos Weapons Neutron Research Facility (WNR)
i1s a world-class neutron scattering installation devoted to basie
rescarch in physics, chemistry, materials sclence and biology.
Operating 1in conjunction with the 800 MeV linear accelerator at the
Los Alamos Meson Physics Facllity (LAMPF) the facility supports an
expandirg, international user community. A major facllity upgrade
currently being implemented willl significantly enhance present
capabliliticas and will transform WNR into one of the world's premlere
neutron scactering centers.

The same upgrade, however, wlill render the existing real-time data
acquisition system obsolete. 1Its replacement, which 1is currently
under development by the Computer Section of the WNR Operations Group,
will ultimately consist of a network of 8-12 computers of the VAX
11/750 class each hosting the VMS operating system. Each computer
will be dedicated to acquiring data from a single spectrometer. To
accomplish this task, each computer willl execute identical data ac-
quisition sof'tware.

The projected size of t{he software system being developed to meet the
data acquisition requirements of the new facllity 1s approximately
150 K executable lines. The programming language chosen for the
project 1s un extended version of Pascal. Reliable operation of this
system 1ls essential as software fallures can result 1in total disrup-
tion of the operation of the facility. Because of the great expense
incurred in producing the neutron beam, and the high demand by users
for access to the facllity, the economic, political and sclentific
congsequences of a system fallure can be quite serious. Because of the
sheer size of the project, the complexity of the software belng
developed, and the mission-critical nature of the system, 1t was
declded during the early stages of the project to employ a rigorous
software engineering approach, including the incorporation of strin-
gent software configuration management.

In addltion to the basic hardware and software faclility characteris-
tics presented above, the organization and structure of the software
development staff 1s extremely important in determining the level and
mode of configuration manarement appropriate for the project. Our
organization consists of three very senior staff members with full-
time responsibllity for software design and implementation. In
addition, we have avallable the equivelent of approximately two full-
time people to support the development effort. These individuals
range in experlence from very senlor staff members with partial
responsliblility for software to Jjunlor programmers and data analysts.

The project management structure 1s also quite different f'rom that
associated with most large-scale development efforts. The small staff
Attached to the project does not warrant the multilayered, highly
stratifled management structure 1lmposed on large development projects.
Indecd, a single manager oversees the entire software desvclopment
oeffort. Heavy rellance on the experience and Judgement of the
sof'tware staft further reduces management visibllity to a minimal
level,

Advantages of the CCC Environment

After evaluating varlous commercial configuration management systems,
we chose the CCC as the tool beot fitted to support our configuration
managemens ef'fort. The CCC environment can provide virtually un-
brecachable scecurity fer system sources (and documentation), thereby
eliminating the posaibility of inadvertent or unauthorlzed modit'ica-
tion of any of these key system components. Thils capubility 1s of
particular importance in a highly volatile development environment
such as ours: one in which every programmer has access to system

management resources and therefcre 1s potentially capable of bypassing
all fille protections established by the operating system.

The CCC environment also provides us with a comprehensive, automated
version control system, a feature that 1s essentlal to the conduct of
an effective configuration accounting effort. This feature glves us
the capablility to deflne the preclse configuration of any software
component of the data acquisition system. In addition, it provides
for fallback configurations that can be utilized in the event of a
serious failure of a primary software component, thus allcwing the
data acquisition task to continue (though possibly with reduced
capabllity) while the primary component is under repair.

The almost unlimited extent to which the CCC macro facllity allows the
configuration management environment to be automated 1s another ex-
tremely valuable feature. This capability 1s particularly attractive
within the context of our project for which the relatively small size
of the technlical staff demands that the overhead assoclated with
support functions (such as configuration management) be kept to an
absolute minimum. The introcduction of automated procedures into the
environment not only decreases the time spent on configuratlon manage-
ment functions, but also significantly enhances the accuracy and
reliability of all transactions.

Finally, the capabllity to minimize the size of the configuretion data
base by defining global text structures for parent configurations
provides an effective mechanism for conserving preclous disk
resources. This allows many generations of each software component to
be maintained in the data base without duplicating rzdundant informa-
tion, thereby eliminating the necessity of restoring a previous
version from secondary storage 1n the event of a meintenanne
emergency. This feature significantly enhances the abllity of the
conflguration management staff to react to emergency situations as
they arise,.

The Need for an Extended Environment

Although we recognize the CCC environment as an extremely powerfug
tool to support confipguration management activitles, it is our posi-
tion that the conventional methodologles for utillizing this tool are
not adequate to meet the needs of a small software development project
such as ours. At the extreme of maxim'm CCC ucilization, the
methodology requires that every development and maintenance programmer
work entirely within the confines of the CCC data base, using CCC
comma.ids and the CCC editor to accomplish all programming and main-
tenance activities. At the opposite extreme, programming and
meintenance staff do not interact with the CCC data base, hut instead
conduct thelr programming activitles externally. A manager 1s then
responsible for copying all work from the users' environments into the
CCC data base At regular intervals. The deficiencies of these
methodologlies are discussed below.

The policy of maximum CCC utilization allows management to exercise a
high level of visibility throughout the development process, and

management resources and therefore 1s potentlially capable of bypassing
all Tile protections established by the operating system.

The CCC environment also provides us with a comprehensive, automated
version control system, a feature that 1s essential to the conduct of
an effective configuration accounting effort. This feature gives us
the capabllity to define the precise configuration of any software
component of the data acquisition system. In addition, it provides
for fallback configurations that can be utilized in the event of a
serious fallure of a primary software component, thus allowing the
data acquisition task to continue (though possibly with reduced
capability) while the primary component is under repair.

The almost unlimited extent to which the CCC macro faclility allows the
configuration management environment to be automated 1s another ex-
tremely valuable feature. This capablllity 1s particularly attractive
within the context of our project for which the relatlvely small size
of the technical staff demands that the overhead assocliated with
support functions (such as configuration maragement) be kept to an
absolute minimum. The introductlion of automated procedures into the
environment not only decreases the time spent on configuration manage-
ment functions, but significantly enhances the accuracy and
reliability of all transactions.

Finally, the capability to minimize the size of the confilgur~tion data
base by defining global text structures for parent configuratlons
provides an effective mechanlism for conserving preclous disk
resources. This allows many generations of each software component to
be maintained in the data base without duplicating redundant informe-
tion, thereby eliminating the necessity of restoring a previous
version from secondary storage in the event of a mailntenance
emergency. This feature slgnificantly enhances the abllity of the
configuration management staff to react to emergency sltuatlons as
they arise.

The Need for en Extended Environment

Although we recognize the CCC environment as an extremely powerful
tool to support configuration management activities, 1t is our posi-
tion that the conventional methodologles for utilizing this tool are
not adequate to meet the needs of a small software development project
such as ours. At the extreme of maximum CCC utilizatlion, the
methodology requires that every development and malntenance programmer
work entirely within the confines of the CCC data base, using CCC
commands and the CCC editor to accomplish all programming and main-
tenance activities. At the opposite extreme, programming and
maintenance staff do not lnteract with the CCC data base, but instead
conduct thelr programming activities externally. A manager is then
responsible for copyling all work from the users' environments into the
CCC data base at regular intervals. The deflcliencies of these
methodologles are discussed below.

The pollcy »f maximum CCC utilization allows management to exerclse a
high level of visibility throughout the development process, anrd

provides the capabllity to identify software verslon changes with an
extremely flne time resolution. Unfortunately, thls approach also
imposes severe overheads on both configuration management and develop-
ment personnel. The most severe management overhead derives from the
necesslity for the data base administrator to define and maintain
access control information for every CCC user. This problem is fur-
ther complicated by the extremely volatile development environment
that 1s often assoclated with small projects: users' access control
information may require modification on a dally or even hourly basis.
Add 1in a constraint that requires all maintenance operatlions to be
performed in a modular fashlon (programmers are allowed access to
only those modules of a software component that actually require
modification) and the process of maintalning access control informa-
tion becomes 1lncreasingly error-prone and time intensive. It should
be noted that thils activity cannot be extensively automated, so there
is 1little hope of reducing these overheads through the use of the CCC
macro facility.

Also, the maximum utillization strategy imposes 1intolerable overheads
on the technical staff. The effective relocation of the development
environment to within the confines of the (CC data base has the 1im-
mediate consequence of making standard development tools (compilers,
linkers, etc.) as well as locally developed automated software support
tools lnaccesslble to the developer. As a result, what should be a
simple complle-link procedure becomes tedious, time consuming, multi-
step operation involving exportatlion of the appropriate modules from
the data base, performance of compilation and link steps 1in the host
operating system environment, and importation of the sou 'ce modules
back into the data base. In addition to the direct deleterious ef-
fects upon developer productlivity, the impocition of such overheads
can foster resentment and can result in serlous eroslon of morale
within the technical staff. To support & modular maintenance effort
within this environment becomes even more difricult, requiring a
significantly increased level of participation by the data base
administrator.

Additional unacceptable overheads are also characteristic of the
maximum utillzation implementation. Developers are required to become
proficient with new software interfaces 1in order to operate within the
CCC data base. In some cases these new interfaces may he percelved as
less effective than tonls that exlst at the operating system level
(for instance, programmers resiat abandoning the versatile, full-
screen VMS EDT editor for the less powerful, line-oriented CCC
editor). Additionally, responsc times deteriorate rapidly as more
users are forced to access the data base simultaneously. Coupled with
the extra response time overhead introduced by a pollcy of archiving
incremental changes for most recent versions, these delays can
sericusly degrade development productivity.

The minimum utilizarvion methodology also presents serious problems as
a configuration management implementation strategy. Although access
control, tnol accessibility and response time overheads are largely
eliminated »y this approach, significant new management overheads are
introduced. Foremost among these 1s the Increased effort required to
vxport modules f'rom the CCC data base for maintenance, especlally in a

modular maintenance environment. When used in this mode, the CCC
environment seems to be reduced to an extremely sophisticated (and
expensive) backup utility.

Both methodologlies seem to allow the CCC data base to become cluttered
with uncertified intermedliate software versions. This generally
results in rapid increase in data base size and dzcreased intervals
between data base malntenance and backup activities. Almost regard-
less of the time resolution assoclated witn the the smallest increment
of change, the benefits to be galned by saving uncertified versions in
the data “ase are offset by the increased maintenance burden placed on
the data base administrator.

In short, theire seems to be a basic incompatliblility between environ-
ments that promote a strong development effort (the VMS operating
system environment, for example) and those, such as CCC, that support
rigorous, automated configuration management activities. Environments
1n which developers thrive present severe difficulties for configura-
tion management personnel. The converse also appears to be true.
Conventional approaches to the resolution of these problems generally
force one of these groups to work wi%thin an lnadequate environment 1in
order to preserve the effectiveness of the other group. In worst case
situations, each group 1s forced to endure a compromise solution 1in
which both partlies sacrifice significant capabllities and no one 1is
satisfied. The Los Alemos approach, however, 1s to define a new
methodology that completely 1solates development activities from the
configuratlon management effort, thereby allowlng the full power of
each environment to be exploited to 1ts fullest. The unique feature
of this strategy 1s the provision of an interface between the two
environments that allows for automated 1lnteractlon between them, and
act'lally melds them 1into a single, comprehensive hybrld environment
for software development and configuration management.

The Hybrid Ervironment: Specifications

Within tne context of our project, the following properties were
ldentifled as requlred features of the hybrld environment and 1ts
assoclated configuration manugement methodology:

User exrcluslon from the CCC data base. All development/maintenance
activities must be conducted within the VMS host operating system
environment. This requirement was specifled in order to eliminate the
management and develcper overheads assoclated with CCC data base
transactions and maintenance. Only the CCC data base administrator 1is
permitted access to the data base.

Only certified software 1s maintalned under configuration coantrol.
Only soltware that has b. .. reviewed and passed by the racility
Configuration Control Board (CCB) i1s accepted into the configuration
management environment. Likewlse, speciiic approval of the CCB 1s
required before any software 1s released from configuration cuntrol
(by transfer to the development environment). All uncertified
software versiors (generally intermedlate verslons of modules undergo-
ing malntenance or development) remain in the develcpment environment.

Reliance 1s placed upon ordinary facllity software backup procedures
to provide adequate capabillity for reconstruction of modules in the
development environment.

The hybrid environment must impose no additional overheads upon the

developer. All configuration management tasks must be the exclusive
responsibility of configuration management personnel. In addition,

there must be no degradation 1in system response attributable to the

hybrid environment.

The hybrid environment must support.the automation of virtually every
configuration management task. Because the configuration management
staff is responalble for all aspects of the conflguration management
effort, and because these staff members generally have significant
development responcsibllities as well, automated procedures must be
avallable to reduce the effort and increase the rellability of all
configuration management transactions.

The Hybrid Environment: Implementation

The hybrid environment 1s comprised of a development environment and a
configuration management environment, each of which 1s strictly 1so-
lated from the other. The development environment consists of the VMS
operating system utllized in the conventlonal manner and partitioned
into the usual user accounts and directories. All activitlies that
take piace within the development environment are the exclusive
responcibllity of the software developer and are not monitored or
influenced in any manner by the configuration management staff.

The configuration management environment consists of a Configuration
Data Base (CDB) and automated procedures (VMS command files and CCC
macros) to operate on CDB elements. The configuration management
staff is responsible for performing all operations on the CDB.

The organization of the CDB reflects our operational requlrement that
modules be malntalned at different levels of confilguration control
depending on the function, utilization and current change processing
status of a module. To meet this requirement, the CDB is divided into
a Class 1 and a Class 2 partition. The Class 1 partition consists of
the CCC data base and 1s intended to hold modules for which access
must be restricted to co.flguration management personnel only. Source
code, user's documentation and test results are examples of modules
that must be maintained under Class 1 conflguration management. The
Class 1 partition 1s organized such that each constltuent CCC SYSTEM
structure 1s devoted to a different data acqulsition subsystem
(primary commands, tools, utilities), and each CONFIGURATION structure
subordinate to a given SYSTEM represents a unique version of one of
the computer programs that comprise the subsystem. MODULE structures
are used to functionally subdivide each version into user's documenta-
tion, source code and test report categorier. Subordinate TEXT
structures comprise the constituenta of each category. Only the CCC
data base administrator 1s authorlized to access structures that resilde
within the Class 1 partition.

The Class 2 partition consists of a hilerarchy of protected VMS direc-
tories that contaln software modules that must be accessed on an on-
demand basis by data acquisition system users or development
personnel. Included in the 1list of Class 2 modules are executable
images, libraries of object modules and support data bases. All users
have read-access to Class 2 modules; only configuration management
personnel have modify-access. Obviously, modules that exist in the
Class 2 partition are not as secure as those in the Class 1 partition.
However, because these modules exist in non-ASCII format, and because
any Class 2 module can be simply rebuilt (usually by a complle or link
operation) from one or more Class 1 modules, the reduced security is
not considered a serious problem.

The CDB structure 1s primarily responsible for reducing developer
overheads to levels comparable to those that would exlst in the ab-
sence of any configuration management actlvities. By extensively
automating the CDB (using CCC macros for the Class 1 partition and VMS
command files for the Class 2 partition) management overheads can also
be drastically reduced. Indeed, the only aspects of the configuration
management process that do not lend themselves to automaticn under the
hybrid environment are those of 1) releasing software from the Class 1
partition into the development environment and 2) admitting software
(after certification) f.om the development environment into the CDB,
This inabllity to integrate the constituent environments in an
automated fashion was consldered a serlous defliclency of the hybrid
approach 1In light of the fact that these processes comprise the vast
majority of the activities of the conflguration management staff.

Integrating the Environments

In order to address this deficlency, we further extended the hybrid
environment by deflning an interface data structure that enables the
complete automation of software transfers between the constituent
environments. The structure 1s called a Program Source File List
(SFL) and consists of a text flle that describes the structure of a
program. Each program that 1s maintained in the Class 1 partitlion has
a corresponding SFL that reslides with the program source code in the
appropriate CONFIGURATION structure.

An SFL consists of a list of each software module that must be
complled/linked to bulld the executable image for a particular com-
puter program. The SFL 1s organized with one module name per line and
allows commentary materlal to be 1lncluded after any module name. The
SFL also contains information that defines the status (unmodified,
modified, or new) of each module in the list. A sample source flle
list 1s shown below.

Source File List for Program ADD :

ADD | Main program

VALDATBAS | Data base validation routine
SEEKENTRY | Entry locate routinc

UPDATE | New entry addition routine
PMPTUSER | General prompting routine
PARSELINE | Command decoding routine

In order to demonstrate the degree to which SFL's support the unifica-
tion of the hybrid environment through automation of the interface
between the constituent environments, we present the followlng example
of a simple maintenance operation. Consider the ADD program for which
the SFL 1s presented above. Consider also that a software fault
assoclated with the execution of ADD has been identified and reported.
Analysis indicates that bugs exist in the SEEKENTRY and the PARSELINE
subprograms and (in ancordance wlth the modular maintenance policy) a
request has been placed with the configuration administrator to
release these modules into the development environment (li.e. into the
maintenance programmer's local VMS directory). Using manual proce-
dures to accomplish the appropriate transfers from the CCC data base
to the maintenance programmer's VMS directory is a tedious and error-
orone operation. This 1s especially true in light of the fact that a
transfer operation must be performed on every module of the computer
program, regardless of how many modules are to be modified. (This
results from the fact that objJect modules must be generated for all
modules that are not subject to modification, and these object modules
must be transferred to the Class 2 partition 1in order to allow the ADD
program to be linked prior to testing.)

By utillizing the ADD source file 1list, however, the entire manual
process descrlbed above can be replaced by an automated procedure that
reduces the overhead imposed upon the CCC data base adminlistrator to
trivial levels. The only step performed manually involves edlting the
SFL to indicate which modules are to be transferred to the mailntenance
programmer. T'ls 1s accomplished by editing the appropriate SFL (with
the CCC editor to place an asterisk (*) before the name of each module
to be transferred. Within the context of this example the edited SFL
for the ADD program would appear as follows:

Edited Source File List for Program ADD :

ADD | Maln program
VALDATBAS | Data base validation routine
* SEEKENTRY | Entry locate routine
UPDATE | New entry addition routine
PMPTUSER | General prompting routine
l

® PARSELINE Command decoding routine

A CCC macro 1s then invoked that parses the edited SFL and transmits
the source code for the flagged modules to the appropriate maintenance
account, and sends object modules for all other SFL entries to the
Class 2 partition from where they can be accessed by the maintenance

programmer at link time. In addition, the macro sends a copy of the
edited SFL to the malntenance account.

Within the development environment, the SFL can also be utilized to
streamline the job of the developer or maintenance programmer. To
demonstrate thils let us continue our example by assuming that ap-
proprilate modificatlions have been made to SEEKENTRY and PARSELINE. We
willl also assume that th: programmer has decided that, in addition to
these modifications, an entirely new module (called VALCOMMND) 1is also
required and has been developed.

The maintenance programmer 1s now prepared to recompile all of the
modified modules and the newly developcd module prior to relinking the
ADD program. This could be done manually, or even with a command fille
wrltten and maintained by the programmer. A far simpler approach 1s
to use the infrrmation contained in the SFL as 1lnput to an automated
utility (a VMS command file) that recomplles all modified or newly
developed modules. Prior to invoking this utility, the programmer
must re-edit the SFL to indicate any newly developed modules as-
soclated with the program. This 1s accomplished by flagging the names
of all newly developed modules wilith two asterlisks and adding them tc
the SFL. For this example the re-edited SFL would appear as follows:

Re-edited Source File List for Program ADD :
ADD Main program
VALDATBAS Data base validation routine

]
!
¥ SEEKENTRY] Entry locate routine
UPDATE ! New entry addition routine

!

!

|

PMPTUSER General prompting routine
¥ PARSELINE Command decoding routine
¥%#VALCOMMND Command valldation routine

The utllity parses the SFL and complles any module that is flagged as
new (¥*%) or modifiled (*).

Similar support can be provlded for the 1link activity. An automated
procedure can be supplled that parses the SFL and retrieves each
required object module from one of several locations depending on the
status (new, modified or unmodified) of the corresponding entry in the
SFL. ObJjects for new and modified modules are linked from the main-
tenance account; obJects for unmodified modules are linked from the
Class 2 partition.

In addlition to rr~ducing the overheads 1mposed upon the
malintenance/development programmer, utllization of these standard
compllation and link tools guarantees that the same set of compillation
and link options are used 1n every operation. This promotes a level
of software uniformity that would be difflicult to obtain with manual
procedures.

The final step 1n the maintenance cycle for program ADD involves
readmitting (after certification) the modified and newly developed
modules to the Class 1 partition (CCC data base). Depending upon

local configuration management standards and upon the level of maln-
tenance performed, thils step may also require generation of a ncw
CONFIGURATION data structure within CCC to accomodate the modified
software. To accomplish this task a CCC macro zan be 1nvoked to
insert the new CONFIGURATION, import and parse the SFL, and import all
modules that are flagged within the SFL as new or modified. As a
final step, the macro deletes all status flags from the SFL. Agailn,
virtually all manual procedures are eliminated from what would other-
wise be a very complex task.

In addition to eliminating the tedium and significantly reducing the
time involved in processing new and modified modules, use of SFL-based
automated procedures and utilities at all levels of the development
and configuration management efforts virtually eliminates the pos-
sibility of corrupting the Class 1 partition due to an error or
overeight on the part of the developer or the configuration management
staff. Configuration management efforts that rely upon manual proce-
dures to update a data base of protected software are susceptible to
admitting uncertified modules to the data base, or falling to admit
all of the new or modified modules for a program to the data base. 1In
either case, 1f these errors are not immediately detected and rec-
tifled, the integrity of the data base can be seriously compromised.
By providing SFL-based tools that are used by both the
development/maintenance and the configuration management communities,
however, one can guarantee that all modules and the same modules that

comprise a (successfully tested) program are readmitted to the data
base.

The final aspect of SFL utilization that we will present 1s the ap-
plication of SFL's to the automation of software system rebullds.
Within the context of our system, the term system rebulld denotes a
process whereby all software subordinate to a particular data struc-
ture in the Class 1 partition (CCC data base) 1s recompiled and
relinked, and the appropriate compone ts of the Class 2 data base are
updated (with the new executable images, for example). To perform
this task manually, even for a very small system, can be an enormously
complex and time-intensive undertaking.

By utilizing the information within source file 1i1sts, however, this
process can be completely automated. A CCC macro 1s invoked to mcdify
the SFL for each program in the data base, flagging each constituent
module for transfer out of the Class 1 partition. This macro then
invokes the software release macro (discussed above) to transfer all
source modules and the corresponding SFL's to a location in the Class
2 partition from which they can be compiled and linked. The standard
compilation and link utilities can then be executed from a command
file to accomplish the recompilation, relink and recataloging of the
resulting executable image for all exported software. All sources and
objects are then deleted from the Class 2 partition. In this manner
the entire system can be rebullt extremely quickly and reilably.

Conflguration Accounting within the Hybrid Environment

One of the pr.miere difficulties associated with the counduct of a
program o co’ ‘iguration management relates to the generation and
control of large amounts of printed material. Especially for small
projects, and regardless of the degree to which iInterface overheads
~are reduced by the utilization of £FL's, the effort required to gener-
"ate, update, flle and retrieve the printed byproducts of configuration
management activities often dwarfs the savings gleaned from utilizing
automated interface procedures. For a prolect of our size and or-
ganizatlon, the most significant contributor to this sea of paper 1s
the configuration accounting effort.

Our confilguration accounting procedures specify the use of four dif-
ferent reports to initlate software changes and track the change
processing status of a software component through the development,
maintenance and certiflcation processes. Typical of these forms 1s
the Discrepancy Report (DR), a standard form that 1s completed and
submitted by system users to report a software fault and to initiate
the maintenance activity to repair 1t. 1In order to track these
reports accurately, 1t 1s necessary to maintain logs of pending
(unassigned), in-progress, and completed DR's as well as a
chronologically-organized log for all DR's. In addition a copy of
each DR submlitted ageinst a particular software component should be
filed (in the Class 1 partition) with the source code of the repaired
software. Obviously, maintaining the various logs of printed coples
of these forms requires a major clerical effort. In addition, even if
the logs can be malntained in good order, the process of generating
reports that summarize *thelir contents cannot be easily accomplished
with manual procedures.

Within the structure of the hybrid environment, however, these
problems can be very effectlively addressed by automating all aspects
of the configuration accounting process. Templates feor all configura-
tion accounting forms reside in the Class 2 partition of the CDB,
where they can be accessed by all users. A template can be completed
using a text edltor and submitted via electronic mall to a special
holding aree in the Class 2 partition where 1t 1s assigned a unique
ldentit'ying number. A collectlion of CCC macros can then be used to
perform all operations upcn a submitted DR, including:

a) importation from the holding area to the chronological log
(within the CCC data base);

b) modification of the DRk text to record the identifying number
on the DR;

c) assignment of a change name to rei'lect the PENDING status of
the DR;

d) automatic change of status of the DR from PENDING to ASSIGNED
when the DR 1s ussigned to a programmer or analyst. Upon
assignment, automatlc exportation of the DR to the program-
mer's development environment;

e) automatic change of stitus of the DR from ASSIGNED to
COMPLETED when the maliitenance specified by the DR has been
completed. Upon completion, automatic exportation of the
satisfied DR to the originator's account (in the Class 2

partition), and automatic copying into the Class 1 data struc-
ture that contains the certified, repalired software sources.

In addition to supporting automated operations upon configuration
accounting forms, the hybrld environment, by making use of CCC's data
base management capabllitlies, supports automated management of these
forms. CCC macros that employ the LISTCHANGE and LISTSTRUCTURE com-
mands can be used to generate the foilowing reports on the status of
the change proceasing effort:
a) names and status of all entries in the chronological log ;
b) all change processing requests that have been submitted after
a specified date and time ;
c¢) 1ndividual lists of all change processing requests correspond-
ing to a particular status: PENDING, ASSIGNED, or COMPLETED.

For a small project with a limlted staff, the hybrid environment makes
possible the implementation and support of very powerful automated
change processing and configuratlion accounting proceciures without
burdening the development/maintenance communities wl“h additional
overheads. Defilnitlion of these procedures accomplishes the goal of
addreasing all configuration management activitlies in an automated
fashlion, thereby maximlizing the effectliveness and productivity of the
configuration management staff without 1interfering with the
development/maintenance effort. It also allows for electronlc storage
maintenance, transfer and retrieval of information that would other-
wise be mainteined in printed form, thereby moving us one step closer
to the goal of "paperless" project management.

Conclusions

In thils paper we have presented the results of our efforts to imple-
ment an effective automatzd confliguration management environment to
support a small software development project. We have demonstrated
that the 1Introduction of a hybrid environment that explolts features
of the Softool CCC (for configuration management support) and the VMS
operating system (for development support) provides an exiremely
powerful structure within which both of these complementary activities
can be conducted. We have further demons.rated that a simple inter-
face data structure (the SFL) can be defined that aliows automation of
the interactions that must take place between the constituents of the
hybrid cnvironment. "inally we have shown that the performance of
this system (in terms of operational overheads, convenience and user
training) significantly exceeds that of conventicnal configuration
management environments. Indced, we have shown that the capabllities
of a developer operating within the hybrid environment are actually
enhanced, without imposing any significant additional overheads.

The hybrid environment approach to configuration management was
developerd specifically to address the requirements of a small software
development project. These requirements dictaved the elimination of
intrusions upon the development effort by configuration management
activities. 1In addition, the ability to automatc all phases of the
confilguration management effort was deemed the only practical way to
guarantee that all configuration management activities could be

carriled out by a very small staff. It 1s our oplnion, however, that
the hybrid environment approach is also appropriate for use in con-
Junction with large-scale software development projects. Although the
high level of management visiblility supported by the hybrid environ-
ment, and the prohiblition against retalning uncertified versions
within the CCC data base may be considered limitations, the tremendous
reduction in the overheads imposed upon both management and technical

staffs could potentially resvlt in even greater productivity gains
than are seen on a small project.

We predict that the minimum impact of the implementation of the hybrid
development/configuration management environment upon a large-scale
scftware development project would be the re-assignment of a large
fraction of the configuration management staff from tedious manual
tasks to (more productive) development-oriented activities.
Certainly, it 1s true that the automated procedures that we have
described 1n thls paper constitute a minimum exploitation of an ex-
tremely powerful resource: a subset that enables the small project to
conduct effective configuration management. The enhancements to this
system that might be realized by redirecting the efforts of staff
formerly engaged in manual configuration management activities to the
develorment and support of new automated capabilities could
revolutionize this very lamportant software engineering discipline.

T M Ta vAanly wae NanlAaArmasl anAdam Fha aaninna AF +ha 11 Q Narnantman i

